1) Multiply the two matrices below or state why they cannot be multiplied. (15 points)

$$\begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} 0 & -3 & 1 \\ 2 & 2 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 0+8 & -3+8 & 1+16 \\ 0+6 & -6+6 & 2+12 \\ 0-2 & -15-2 & 5-4 \end{bmatrix} = \begin{bmatrix} 8 & 5 & 17 \\ 6 & 0 & 14 \\ -2 & -17 & 1 \end{bmatrix}$$

2) Find the null space of the matrix below. (16 points)

$$\begin{bmatrix} 1 & 1 & 3 \\ 2 & 2 & 6 \\ 0 & 0 & 4 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\begin{aligned} x + y &= 0\\ x &= -y\\ z &= 0\\ \left\{ \begin{bmatrix} -y\\ y\\ 0 \end{bmatrix} : y \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} y : y \in \mathbb{R} \right\} = span\left(\left\{ \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} \right\} \right) \end{aligned}$

3) Reduce the matrix below to reduced row echelon form. (16 points)

$$\begin{bmatrix} 1 & 2 & 5 & 6 \\ 0 & 2 & 4 & 6 \\ 2 & 4 & 10 & 15 \\ 1 & 4 & 9 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 5 & 6 \\ 0 & 2 & 4 & 6 \\ 2 & 4 & 10 & 15 \\ 1 & 4 & 9 & 12 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 5 & 6 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & 3 \\ 1 & 4 & 9 & 12 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 5 & 6 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & 3 \\ 1 & 4 & 9 & 12 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 5 & 6 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 2 & 4 & 6 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 2 & 5 & 6 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim_{R_{3}} R_{3} - 2R_{1} \quad R_{4} \rightarrow R_{4} - R_{1} \quad R_{4} \rightarrow R_{4} - 2R_{2} \quad R_{2} \rightarrow \frac{1}{2}R_{2}$$

$$\sim_{R} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim_{R} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_{1} \rightarrow R_{1} - 2R_{2} \quad R_{3} \rightarrow \frac{1}{3}R_{3} \quad R_{2} \rightarrow R_{2} - 3R_{3}$$

4) Answer the questions below (3 points each)

(A) Let A be a 2 × 4 matrix. How many solutions does $A\vec{x} = \vec{0}$ have?

 ∞

(B) Let *A* be a 4×2 matrix. In row reduced echelon form, it has 3 rows of zeroes. How many solutions does $A\vec{x} = \vec{0}$ have?

 ∞

- (C) Let *A* be a 3 × 3 matrix such that $A\vec{x} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ has one solution. How many solutions does $A\vec{x} = \begin{bmatrix} 0\\0\\2 \end{bmatrix}$ have?
- 1
- (D) If A is a 7×7 matrix and the dimension of the row space is 5, what is the dimension of the column space?

5

(E) If A is a 7 × 5 matrix such that $A\vec{x} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ has infinitely many solutions, what is the maximum dimension of the row space of A?

4

5) Find the length of the vector below. (8 points)

 $\begin{bmatrix} 1\\ 2\\ 0\\ 2\end{bmatrix}$

$\sqrt{1+4+4} = \sqrt{9} = 3$

6) Are the vectors below orthogonal to each other? Justify your answer. (8 points)

$$\begin{bmatrix} 1\\2\\0\\4 \end{bmatrix} \text{ and } \begin{bmatrix} -2\\3\\5\\0 \end{bmatrix}$$
$$= -2 + 6 + 0 + 0 = 4 \neq 0$$

They are not orthogonal, as the above dot product is nonzero.

7) Identify a good partition to use to multiply the matrices below, then multiply them. (7 points)

٢1	2	0	0	0	0	ך0	٢2	-1	0	ך 0
3	4	0	0	0	0	0	5	3	0	0
0	0	1	0	0	0	0	0	0	4	-5
0	0	0	1	0	0	0	0	0	7	7
0	0	0	0	1	0	0	0	0	9	11
0	0	0	0	0	1	0	0	0	1	2
L0	0	0	0	0	0	1	L ₀	0	4	6]
				$\begin{bmatrix} P \\ \vec{0} \end{bmatrix}$ 12 26 0 0 0 0 0 0	5 9 0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 4 \\ 7 \\ 9 \\ 1 \\ 4 \end{bmatrix}$	$ \begin{bmatrix} A_{1} \\ 0 \\ 0 \\ -5 \\ 7 \\ 11 \\ 2 \\ 6 \end{bmatrix} $		J	

8) Multiply the vector
$$\vec{v} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$
 by the scalar 5. (8 points)

 9) Add the matrices below. (7 points)

$$\begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 3 & -3 \\ 0 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 5 & -1 \\ 3 & 8 \end{bmatrix}$$